Basic Math Functions

Percentage

Formula

$$
\text { Percentage }(\%)=\frac{\text { Obtained Value }}{\text { Maximum Value }} \times 100
$$

X Percentage of Y

Formula

$$
X \% \text { of } Y=\frac{X}{100} \times Y
$$

Percentage Difference

Formula

$\%$ Difference $=\frac{\text { New Value - Initial Value }}{\left(\frac{\text { New Value - Initial Value }}{2}\right)} \times 100$
ㄷetcalc cor

Percentage Error

Formula

$\%$ Error $=\frac{\text { Practical Value }- \text { Theoretical Value }}{\text { Theoretical Value }} \times 100$ Eetcalcor

Percentage Change

Formula

$$
\% \text { Change }=\frac{\text { Final Value }- \text { Initial Value }}{\text { Initial Value }} \times 100
$$

Factorial

Formula

$$
\begin{aligned}
& \mathrm{n}!=1 \times 2 \times 3 \times \ldots \times \mathrm{n} \\
& \mathrm{n}!\longrightarrow \text { Factorial of a number }
\end{aligned}
$$

Fraction Simplification

Formula

Fraction Simplification

GCD Method

$$
\operatorname{Reduce}\left(\frac{A}{B}\right)=\left(\frac{\left(\frac{A}{G C D \text { of } A \& B}\right)}{\left(\frac{B}{G C D \text { of } A \& B}\right)}\right)
$$

Average

Formula

$$
\begin{aligned}
& \text { Average }=\frac{\sum_{i=1}^{n} X_{i}}{n} \\
& \sum_{i=1}^{n} x_{i} \longrightarrow x_{1}+x_{2}+x_{3}+x_{4}+\ldots \ldots+x_{n} \\
& n \longrightarrow \text { total number of terms }
\end{aligned}
$$

Formula

Natural Numbers Sum \& Average

$$
1+2+3+4 \ldots+n=\frac{n(n+1)}{2}
$$

Average $=\frac{(\mathrm{n}+1)}{2}$
$\mathrm{n} \longrightarrow$ total number of terms

Sum of First n Odd Numbers

Formula

Odd Numbers Sum \& Average $1+3+5+7 \ldots+n=n^{2}$

Average $=\mathrm{n}$
$\mathrm{n} \longrightarrow$ total number of terms

Formula

Even Numbers Sum \& Average
$2+4+6+8 \ldots+n=n(n+1)$

Average $=(\mathrm{n}+1)$
$\mathrm{n} \longrightarrow$ total number of terms

Sum of Square Numbers Series

Formula

Square Numbers Sum \& Average

$$
1^{2}+2^{2}+3^{2}+4^{2} \ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Average $=\frac{(n+1)(2 n+1)}{6}$
$\mathrm{n} \longrightarrow$ total number of terms

Sum of Cube Numbers Series

Formula

Cube Numbers Sum \& Average
$1^{3}+2^{3}+3^{3}+4^{3} \ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$
Average $=\frac{n(n+1)^{2}}{4}$
$\mathrm{n} \longrightarrow$ total number of terms

AP - Arithmetic Progression

Formula

$$
\begin{aligned}
\mathrm{Tn} & =\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
\text { Sum } & =\frac{\mathrm{n}}{2}\left(\mathrm{a}+\mathrm{T}_{\mathrm{n}}\right) \\
\mathrm{T} \mathrm{n} & \longrightarrow \mathrm{n}^{\text {th }} \text { term of the Arithmetic Progression } \\
\mathrm{a} & \longrightarrow \text { first term of AP series or number sequence } \\
\mathrm{d} & \longrightarrow \text { difference between first \& second terms } \\
\mathrm{n} & \longrightarrow \text { total count of terms } \\
\text { Sum } & \longrightarrow \text { sum of Arithmetic Progression }
\end{aligned}
$$

GP - Geometric Progression

Formula

$$
T_{n}=a r^{n-1}
$$

Sum $=\frac{a\left(r^{n}-1\right)}{r-1}$
$\mathrm{T}_{\mathrm{n}} \longrightarrow \mathrm{n}^{\text {th }}$ Term
$r \longrightarrow$ Common ratio
$\mathrm{n} \longrightarrow$ Number of Terms
Sum \longrightarrow Sum of all Geometric Progression
Eetcalc cor

Pythagorean Theorem

Formula

Pythagoras Theorem:

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& a=\sqrt{c^{2}-b^{2}} \\
& b=\sqrt{c^{2}-a^{2}} \\
& c=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

b

Complex Numbers Arithmetic

Formula

Complex Number Arithmetric:

$$
\begin{aligned}
& (a+b i)+(c+d i)=(a+c)+(b+d) i \\
& (a+b i)-(c+d i)=(a-c)+(b-d) i \\
& (a+b i) \times(c+d i)=(a c-b d)+(a d+b c) i \\
& \frac{a+b i}{c+d i}=\frac{a c+b d}{c^{2}+d^{2}}+\frac{b c-a d}{c^{2}+d^{2}} \cdot i
\end{aligned}
$$

Quadratic Equation

Formula

Quadratic Equation:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

